## THE ELUSIVE HEISENBERG LIMIT IN QUANTUM ENHANCED METROLOGY

#### Rafal Demkowicz-Dobrzanski<sup>1</sup>, <u>Jan Kolodynski<sup>1</sup></u>, Madalin Guta<sup>2</sup>

<sup>1</sup>Faculty of Physics, University of Warsaw, Poland

<sup>2</sup> School of Mathematical Sciences, University of Nottingham, United Kingdom

arXiv:1201.3940 (2012)













## METROLOGY AT ITS (CLASSICAL) LIMITS

#### LIGO - gravitational wave detector



Michelson interferometer  $\Delta L/L \approx 10^{-22}$ 

#### **NIST - Cs fountain atomic clock**



Ramsey interferometry  $\Delta t/t \approx 10^{-16}$ 

PRECISION LIMITED BY:

shot noise  $\propto 1/\sqrt{N} = 1/N^{1/2}$ N- number of photons  $\approx 10^{12}$ /ns

projection noise  $\propto 1/\sqrt{N} = 1/N^{1/2}$ N- number of atoms  $\approx 10^7$ 

## (QUANTUM) ESTIMATION SETUP



#### "AIM / RULES OF THE GAME":

#### • Minimise the average error: $\Delta \tilde{\varphi} = \sqrt{\left\langle \left(\tilde{\varphi} - \varphi\right)^2 \right\rangle}$ $\rightarrow$ Find the optimal method of establishing $\tilde{\varphi}$ as close to $\varphi$ .

- Optimal to consider pure input states.
- $\circ$  Independent decoherence is most destructive  $\rightarrow$  ignore collective decoherence effects.
- **Still hard!**, as we need to optimise over:

the input state + the set of all POVMs + the estimator.

UPPER (LOWER) BOUND ON PRECISION (ERROR) BY MEANS OF

## (QUANTUM) FISHER INFORMATION

**Cramer-Rao bound**:

$$\Delta \tilde{\varphi} \ge \frac{1}{\sqrt{F}}$$

(depends only on the input state)

## **OPTICAL INTERFEROMETER**

**NO** DECOHERENCE



$$\psi_{out}^{N}(\varphi) \rangle = \mathrm{e}^{-\mathrm{i}\frac{\varphi}{2} \left( \hat{n}_{a}^{\dagger} \hat{n}_{a} - \hat{n}_{b}^{\dagger} \hat{n}_{b} \right)} \left| \psi_{in}^{N} \right\rangle$$

- Fisher Information easy to calculate.
- Optimal *N* photon state (maximal *F=N*<sup>2</sup>):

$$\left|\psi_{in}^{N}
ight
angle = rac{1}{\sqrt{2}}\left(\left|N,0
ight
angle + \left|0,N
ight
angle
ight)$$
  
Heisenberg Scaling



J. J. . Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, *Phys. Rev. A* **54**, R4649 (1996). WITH DECOHERENCE

- The output state is mixed.
- Fisher Information difficult to calculate.
- Optimal states do not have simple structure.

R. Demkowicz-Dobrzanski et al, PRA 80, 013825(2009),

- U. Dorner et al, PRL. 102, 040403 (2009)
- Asymptotic analytical lower bound:





JK, R. Demkowicz-Dobrzanski, PRA **82**,053804 (2010), S. Knysh, V. Smelyanskiy, G. Durkin, PRA **83**, (2011) **ULTIMATE** LOWER BOUND ON PRECISION BY MEANS OF

### (QUANTUM) FISHER INFORMATION

**Cramer-Rao bound:**  $\Delta \tilde{\varphi} \geq \frac{1}{\sqrt{F}}$  F – Fisher information (depends only on the input state)

Saturable only for infinite number of trials, when estimating (locally) deviations from a known value of the parameter,  $\varphi_0$ . (Other cases can only be worse  $\odot$ )



Heisenberg scaling is lost even for infinitesimal decoherence!!!

# Is there a simpler, more general and more intuitive explanation?

#### Yes!!! – <u>almost all</u> decoherence models possess this property.

Answer realized via means of two methods:

#### **Classical Simulation Method**

- Stems from possibility to simulate quantum chanels via classical probabilistic mixtures.
- Optimal simulation corresponds to an simple, intuitive, geometric representation.
- Proves that *almost all* (including full rank) channels asymptotically scale classically.
- Allows to derive a bound in 60 seconds ☺.

#### **Channel Extension Method**

- Extends the CSM method to some φ-extremal channels.
- Sometimes provides even tighter bounds at the expense of the analyticity of solutions.
- However, the bounds can always be efficently found numerically by means of <u>Semi-Definite Programming.</u>

R.Demkowicz-Dobrzanski, JK, M. Guta, arXiv:1201.3940 (2012)

## CLASSICAL SIMULATION OF A QUANTUM CHANNEL

Convex set of quantum channels (CPTP maps)  $\Lambda = \int dX \, p(X) \Lambda_X$   $\Lambda : \, \varrho_{in} \in B \, (\mathcal{H}_{d_{in}}) \longrightarrow \varrho_{out} \in B \, (\mathcal{H}_{d_{out}})$ 

## CLASSICAL SIMULATION OF A QUANTUM CHANNEL

Convex set of quantum channels (CPTP maps)

 $\Lambda_{\varphi} = \int \mathrm{d}X \, p_{\varphi}(X) \Lambda_X$ 

Parameter dependence moved to mixing probabilities

 $\begin{array}{cccc} \text{Before:} & \text{Now (sampling from $X^{N}$):} \\ \varphi \rightarrow \Lambda_{\varphi}^{\otimes N} \left[ \varrho_{in}^{N} \right] \rightarrow \varrho_{out}^{N}(\varphi) \rightarrow \tilde{\varphi} & \varphi \rightarrow p_{\varphi} \rightarrow X^{N} \rightarrow \bigotimes_{i=1}^{N} \Lambda_{X_{i}} \left[ \varrho_{in}^{N} \right] \rightarrow \varrho_{out}^{N}(\varphi) \rightarrow \tilde{\varphi} \\ & \text{By Markov property....} & \varphi \rightarrow p_{\varphi} \rightarrow X^{N} \rightarrow \tilde{\varphi} \\ & \text{Estimating directly from $X^{N}$ is no worse than from measurement on $\varrho_{out}^{N}(\varphi)$ \\ & \text{CLASSICAL $N$ INDEPENDENT VARIABLES !!} \\ \hline F \left[ \varrho_{out}^{N}(\varphi) \right] \leq N F_{cl}[p_{\varphi}(X)] & \longrightarrow & \Delta \tilde{\varphi} \geq \frac{1}{\sqrt{F}} \geq \frac{1}{F_{cl}} \frac{1}{\sqrt{N}} \end{array}$ 

K. Matsumoto, arXiv:1006.0300 (2010)

## THE "WORST" CLASSICAL SIMULATION

Quantum Fisher Information at a given  $\varphi$  depends only on

 $\Lambda_arphi = \partial_arphi \Lambda_arphi$ 



It is enough to analize,,local classical simulation":

$$\Lambda_{\varphi} = \int dX \ p_{\varphi}(X)\Lambda_X + O(d\varphi^2)$$

The "worst" classical simulation:

$$\Lambda_{\varphi} = p_{+}(\varphi)\Lambda_{+} + p_{-}(\varphi)\Lambda_{-} + O(d\varphi^{2}) \qquad \Lambda_{\pm} = \Lambda_{\varphi} \pm \frac{d\Lambda_{\varphi}}{d\varphi}\epsilon_{\pm}$$
$$\Delta \tilde{\varphi} \ge \sqrt{\frac{\epsilon_{+}\epsilon_{-}}{N}}$$

**Does** <u>not</u> work for  $\varphi$ -extremal channels, e.g *unitaries*  $\mathcal{U}_{\varphi}$ .

R. Demkowicz-Dobrzanski, JK, M. Guta, arXiv:1201.3940 (2012)

7 4

## QUBIT DEPHASING: DERIVATION OF THE BOUND IN 60 SECONDS!



**Choi-Jamiołkowski isomorphism (**positive operators correspond to physical maps)  $P_{\Lambda_{\varphi}} = \Lambda_{\varphi} \otimes \mathbb{1}(|\Phi\rangle\langle\Phi|) \qquad |\Phi\rangle = \sum_{i} |i\rangle \otimes |i\rangle \qquad \text{we look for } \varepsilon_{\pm} \text{ such that}$   $P_{\Lambda_{\varphi}} \pm \varepsilon_{\pm} \partial_{\varphi} P_{\Lambda_{\varphi}} \ge 0$   $\begin{pmatrix} 1 & 0 & 0 & e^{i\varphi}\eta \end{pmatrix}$ 

$$P_{\Lambda_{\varphi}} = \begin{pmatrix} 1 & 0 & 0 & c & \eta \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ e^{-i\varphi}\eta & 0 & 0 & 1 \end{pmatrix}$$

R. Demkowicz-Dobrzanski, JK, M. Guta, arXiv:1201.3940 (2012)

## **QUBIT DEPHASING: DERIVATION OF THE**



**Choi-Jamiołkowski isomorphism (**positive operators correspond to physical maps)  $P_{\Lambda_{\varphi}} = \Lambda_{\varphi} \otimes \mathbb{1}(|\Phi\rangle\langle\Phi|) \qquad |\Phi\rangle = \sum_{i} |i\rangle \otimes |i\rangle \qquad \text{we look for } \varepsilon_{\pm} \text{ such that}$   $P_{\Lambda_{\varphi}} \pm \varepsilon_{\pm}\partial_{\varphi}P_{\Lambda_{\varphi}} \geq 0$   $P_{\Lambda_{\varphi}} + \varepsilon \partial_{\varphi}P_{\Lambda_{\varphi}} = \begin{pmatrix} 1 & 0 & 0 & e^{i\varphi}\eta(1+i\varepsilon) \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ e^{-i\varphi}\eta(1-i\varepsilon) & 0 & 0 & 1 \end{pmatrix} \qquad \begin{array}{l} \eta^{2}(1+\varepsilon^{2}) \leq 1 \\ \varepsilon \leq \frac{\sqrt{1-\eta^{2}}}{\eta} \end{array}$  $\Delta \tilde{\varphi} \ge \sqrt{\frac{\varepsilon_{+}\varepsilon_{-}}{N}} = \frac{\sqrt{1-\eta^{2}}}{n} \frac{1}{\sqrt{N}}$ 

**EXACTLY THE SAME AS THE BOUND OF** B. M. Escher, et al. Nature Physics, 7, 406 (2011) (minimization over different Kraus representations)

R. Demkowicz-Dobrzanski, JK, M. Guta, arXiv:1201.3940 (2012)

## SUMMARY

- Heisenberg Scaling is lost for a generic decoherence channel even for *infinitesimal* noise.
- Simple **bounds on precision** can be derived using the *intuitive* geometical picture (Classical Simulation Method).
- $\varphi$ -extremal channels (ones on boundary that is non-flat in the  $\partial_{\varphi} \Lambda_{\varphi}$  direction) are **not** classically simulable.
- However, **such ones** (apart from *unitaries*) seem to be approachable by the *Channel Extension Method* and **scale classically**.

...but (*yet* ③) **no disproof** that there is *no <u>physical</u> noise* that composed with free evolution still *allows* for **HS** asymptotic scaling!



## **GALLERY OF DECOHERENCE MODELS**



 $\Delta \tilde{\varphi} \geq \text{bound}_{\text{CEM}} \geq \text{bound}_{\text{CSM}}$